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ABSTRACT

Thick boundary-layer equations, including the variation of the metric
coefficients with distance normal to the surface. are solved from the nose
to the tail of an elongated three dimensional body. Iteration between
potential and boundary-layer flow solutions is adopted to obtain a
converged solution in the stern region. The complete procedure makes use
of Keller's box numerical scheme in a non-orthogonal curvilinear
coordinate system and an isotropic eddy-viscosity model for the Reynolds
stress tensor in both streamwise and crosswise directions. The numerical
method allows the calculation of flows in which the crosswise component
of velocity contains regions of flow reversal across the boundary layer. The
inviscid pressure is determined by using the Hess-Smith method. The
program is validated for an axisymmetric body and then the calculations --
are compared with measurements for two three-dimensional bodics having
elliptical transverse sections.
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INTRODUC HON

When compared to the thin hull boundary layer, much less progress has been made in the

prediction of the three-dimensional (3-D) thick stern turbulent hoUndar. laser and "ake s hich in~ol~e

higher-order effects. Only three out of the seventeen prediction method, in, the ssI3A lrT(' 1980 Ship

Boundary Layer Workshop considered higher-order effects This is because of (a) the complexity of the

31) low. and (b) the existence of flow separation and trailing %orticit\ ( omplete computational solution " -

of the full Navier-Stokes equations -ire still linmited to laminar timic ascraged turbulent floss. These "

computations require the use of comnputers ha\inc farc c,(rc mcmh W', ,l'hi high ,,iX.ed priwesors. Seeking

solutions for higher order equatiOns. whose CIomplesIC hkit l, Imesn I KM-rc i kecti that ti the Re, rold, and

the thin boundar$ layer equations for turbuderit fI )() a Lrre' i I I I ini )iu rc,,carch topic In

computational ship hydrodynamics.

Two different approaches exist Ior ,()l Ing higher oider cquatins I thc irst appriach simphtics the

Rey nolds equations by discarding the terms rclated to ,t rcams %se dIf, I,,Ion lhe resulting equations are

called the partially parabolic equations. 1amplc,, Of IIIs approach irc citllained inI Relcrence, _.3. and

4. The second approach gcnerali/ s the first I rle or ii ihmdar\ la'Cr equatMIn', 1 introd(tiucg tcrms related

to the second-order curvature effects. The complete solution pro,.cdure incldCs iscous ins iscid inter

action to account for deficiencies inI the go crning e0t i t1s as s' lf as n the numerical solution.

techniques. This approach has been \sidlc\ isCd h% lie aircratn t r\ applications t0 ship flm\s are

*A complete list ing u referece, is gi i m ptig,c 3N.

,1

.....................................................



given in References 5 and 6. The parabolic nature of the equations comprising the latter approach

indicates the downstream pressure field does not influence upstream flow characteristics. Through the -"

viscid-inviscid interaction process, the solutions are corrected by successive global iterations. Although

Abdelmequid et al.2 has made some comparisons between the two approaches, he unfortunately adopted

the second approach without including interactions. It is still not known which approach gives better

predictions. "

In this paper. the numerical method of Cebeci et al. 7 for solving 3-D boundary layers is expanded

to include the curvature terms for thick stern boundary layers. Several new geometrical parameters are

introduced by using the original nonorthogonal coordinate system. The boundary conditions at the edge

of the thick boundary layer are updated in the global iterations between viscous and inviscid solutions.

Some encouraging results have been obtained for an axisymmetric flow and two 3-D flows with

separation. In their survey of boundary-layer theory for flow with separation. McDonald and Briley8

concluded that 2-D flows with mild separation can be treated by applying an interaction procedure to the

boundary layer equations. The present results shed some light on extending this approach to 3-D flows.

COORDINATE SYSTEM

A curvilinear nonorthogonal surface-fitted coordinate system is used to represent ship-hull surfaces.

I igure I depicts this coordinate system (x, y, z) along with Cartesian coordinates (k, Y. 2). Here, a is the

angle between x and z, and y is normal to the hull surface. The potential flow solution for a ship hull is
solved in terms of the Cartesian coordinates and the boundary-layer equations are expressed in the (x, y,

*) coordinate systcn. We select x = _X, and z lies in the -yT-plane. Because the coordinate system is

nonorthogonal. wc are free to select the value of z in the plane to satisfy the condition that the

boun arN line of the ship hull is coincident with the z = constant coordinate line. In this paper. z is
dcter ncd hb mapping each U'7crossplane into a half-unit circle by the numerical method developed by

SIake\" The polar angle. normalized by 1T on the unit circle, is taken as the z-value. The z-values then

rai-c Irom 0i to I on each crossplane. Fhe ad antage of the mapping method is that equi-intcrval, z =

-im'inot. coofdinate lines arc autoniaticall\ concentrated in the region of large curvature w hcre the

houtndakr la\er characteristics are expected to .ar grcatl\.

In flh nonorthogonal coordinate svstcni. the geodcsic curvatures of the curves. -constant, in

he dirict ion of x and the curves x cnslal lln the direction of / are given ill Reference 7 as

III - .. F l, Oh, ".1
1k 1-1 I) co" ,IhI h, *'i [ (i\ / J l.

1K" I h, \,in a, [1;/ ib *".'(r O"

. -- - -"* - - * "-'... . . ". " . " ". . " " . . . " . . . . .. . . .. .
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and the geodesic curvatures of the curves, y = constant, in the directions of x and z are

I ah
K13  h (y

I ah2
K23  h2  y

Since y is selected to be normal to the hull surface, the metric coefficient h3 can be chosen as unity.
- Along the x and z directions, h, and h2 are, in general, functions of x,y, and z; that is

h= h (x, y, z)

h= h2 (x, y, z)

Expanding hi and h2 in series about the coordinate origin leads to

hi h1o + y i I  a -h = ,.''"

(3)

h2 h20  + 1 +)-h- h2. l~ ih2 ay Y= 0 + .. -""

where h10 and h20 are the corresponding values at the surface and are given in Reference 7,

h1 0  
+ \x) +  \ x 11/2

F! ))(o~ 8 112.)
z? "JI?

By comparing Equation (3) to Equation (2) and dropping the higher order terms in the series expansion,

we can write

hl h*l) "I h) h2j ) (a (51"

and a2 are defined as

4

-- ..

-'-.- -- '" -. ,°-... S*, .' . ' . . ':,3/ N V .'- .' , '.''- .* .-- ' . . .. *.' ..-. '. '2"_"".,".',"" "- "."."-"."-"-"."."•" " - -'"*



a + K130 Y = 230 y 16)

where K130 and K230 are the surface curvatures of K,3 and K23. Substitution of Equation (5) into
Equation (2) results in

K13 = K 130  K13 - K23 0  (7)
a, a,

The other related geometric parameters are given in. Reference 7.

GOVERNING EQUATIONS
BOUNDARY-LAYER EQUATIONS

The governing second-order boundary-layer equations for a steady, incompressible, laminar or

turbulent flow in the present curvilinear nonorthogonal coordinate system are given7'10 by:
Continuity Equation -

uhsia)+ (wh, sin a) + i vh1 hi, sin a) 0 18)
a x a z ay

x-Momentum EquationL

u au w au au
- -+- + v -- K, 2 u2 cot a + K21 w2 csc a + K, uw + K13 uvh, ax h2 az ay 9)

csc:a a co p c sc5C a a p a

i-Momentum Equation

U a w +w aw + aw 2w
- -+- - +v - K, w- cot a+ K12 U- csc a + K, uw + Kilw

hax h, az ay
(10)

Cot a csc a a(P S a P a
ax\Q) h z + -~----(h, hi TI)

5



y-Momentum Equation

u av W av av u 2 _
+ Z +v - K13 -- K23 Wa P

ax h2  az ay

where the parameters KI, K 2, Tx, and Tz are defined by

K K12 + + cosa K21 +
I sin a -3x h, a z

K, - L[( K2 1 + + cos a K 12 + (121
sin a , hi  ax

T Q au
Vx 7UUv' Tz aW -V'W' '-

a y 0 y ..o

and u, v, and w represent the velocity components in the x, y, and z directions, respectively. The

parameters p, L and v are the fluid static pressure, density, and kinematic viscosity; 12T "7 and Q,w are

Reynolds stresses. The non-slip boundary condition is applied at the wall, i.e., y = 0. At the edge of the

boundary layer, i.e., y = 4, Equations (9) to (II) can bu written as

S-+ K U cot a + K2 W csc a + K u v + KleU
U2 e + 1 c e 13c C e le e

h a Iax h2  "L
(13)

CSC2 a pcot a csc a a pQ-11 + -I-
he x c h a,

tk aw, w aw ., '
L + ~-K2w 2cot + K 1 2e ue csc a + K~e u.w c + K3we we.ax +~ -w e eC 13

114)

cot a cs a a (P) cSCa a P
h le ax h e  Q "

+ +- K u a K 15) L
h ax h, az a, ay Qe-

6



Thus at y 6, the pressure gradient terms can be expressed in terms of u., ve and we. In the numerical

examples shown later, the boundary-layer Equations (9), (10), (13), and (14) are solved simultaneously

through the procedures described in the following sections.

• .. TURBULENCE CLOSURE
(ebeci-Smith Eddy-Viscosity Model

Solutions of Equations 19) and (10) require some parameterization of the shear stresses -Tx and rV*

(efbeci 7 used an isotropic eddy-viscosity concept for his 3-D computation. These 3-D formulas are given

as '

- u - oW (16

U = - -v w = rm (16)ay May

The eddy viscosity cm is divided into the inner and outer layers. They are continuously connected

at _ c. where (Fm~i = (ilo" In the inner region, (Emi is defined as

r u) + (,) /,u) ('aw)]1

Ifni= 2  + 2 cosa 117( -)).7
a a ) y a 

where Q is a mixing-length approximation equal to 0.4 y [l-exp(l-y/A)l, A is a damping factor equal to

26v/u r, and L is the shear velocity. Also ytr is an intermittency factor to account for the turbulent and

nonturbulent flows produced by the fluctuating outer edge of the boundary layer, and is defined in

Reference 11. in the outer region, Iimt() becomes

km )o =0.0168 u d y18'

here * is the planar displacement thickness and ute is the total velocity at y 6.

\ hdified EddyViscosity Model

In order to calculate a thick 3-D boundary layer by means of the eddy-viscosity concept. it is
:tc.-sa \ to include the cur ature effect12 in the eddy-viscosity formulations. In the appendix. a formula

i, dcri\ed to m()(lif. the inner edd viscositN. Equation (17). by

.77

.7..:-,



where

K 0.4 In L exp In a2la a a
K3-K 13 C (K3-I0A] 121230 a3 &2

- ja 
[ 

a A

For the outer-layer eddy viscosity, a constant value 0.0168 was used in Cebeci's original model, as
shown in Equation (18). This has been proved to be inadequate for a thick turbulent boundary layer 13. 14.

A suggested revised form was proposed for an axisymmetric case in Reference 14. For a simple extension

* of Reference 14, the following formulas are used to account for the curvature effect on the outer-layer

eddy viscosity when K230 d > 0.2.

(m) = F (00168u tr (21)

- where

y(1+0.6 K,230 6d)2l
= .2.522 K230 d

fie value of Q F becomes V/(ro+0.6d)2- r 2 12.5226 for the axisymmetric thick boundary layer, a formula

-" originally proposed by Huang et al. 13 A'4

I.luang's Eddy-Viscosity Model

From three sets of measurements 13. 15 16 for one axisymmetric and two 3-D bodies, Huang has
-o halned a single correlation 17 to represent the eddy viscosity distribution in 3-D thick-stern boundary

latcrs. Huang's turbulence model is used as a two-layer isotropic eddy-viscosity model. It preserves the

. ( heciSmith inner-layer eddy viscosity, as shown in Equation (17). The outer-layer eddy viscosity uses

'qtation (18) unless Ar/A > 1.513 and dK230 > 0.23, where AF is the effective turbulence area defined
- in Reference 17 as 60% of the flow passage area and A is the cross-sectional area at the same axial

lIcation. In order to accommodate the present numerical method described in the later section, a

Smistant eddy viscosity selected for the entire outer layer is given by

8

" . - - - - - - - - - - - - -

.- -- .. . ...- •- - . - - - -. 1- '
:-.- " " - -."." ." . -. ".. -- -" ". .. -." -.' - .. -. "- , -. . -"- -"-" ".." *'- .-"- < '.- " -..'" -% -'.. -- - - -..- " .-,., 2 '-"



mo=Max {2 [LU) + 2 2cosa( )(W]12

where

I = 0.169 VAF/n (y/d) expi - 1.2(y/6) - 1.0667(y/6) 31

TRANSFORMED BOUNDARY-LAYER EQUATIONS

The boundary-layer Equations (8) to (10) are solved in the form of transformed equations by using

the following transformed variables:
fx -
VsV4 = . L; = dr7 =11 dy sI  hi dx (22)

0

A two-component vector potential, which satisifies continuity, Equation (8), is defined as

14) = /li e h2 0 sin a f ,. , 'i)

(23,

(v s1  u' - h10 sin a g (4, o7l

where u() is the ship speed. Accordingly, the three velocity components in the momentum equations can

he cast as

u w g' I

Ua- U( a, QaI F

wvith
1241

af ag
(i mf + rngt' + n2 + ni7 - + mrf' + n116 rg

69 +l + 1()  16,r 9

Here, primes denote differentiation with respect to rl. and all the coefficients mil = I, 2 ..... 27) are

defined in the notation section.

9

III



In order to further reduce the complexity of the boundary-layer equations, we introduce the
, following parameters to replace the dependent variables.

u f'
-- - V =1- = U 1.'.

w 125)

( = u ' (" -.-.

By using the transformed Equations (22) to (25), the boundary-layer equations are finally written as five
first-order partial differential equations, given as:

x-Momentum Equation

lala~bv)' + (v+mL3u1) G anc-alm1d) u-2 - ala.mgw-

-- arl1 lv'- alrn 16"V - ailrn15 + a2mdl uw (26)

+ a~a-,,= amnu- + amn"7W

/Momentumn Equation

iala~bti' + it +m1 4w' C) - alai n1() u1- a~a,n1iW

- -I*I~-- -(271

aaonl1, a+mlU a -171A -

('0ntilluity Equation

ai, (m I +m151 + ' (M 140M 1. + M 18 4i'
-a I-i 6 +m16 ) + Y ln1 1rnm + m1 ten -ua'm1281

" a, nil l ainl - + alM7

-7 0

o ..... .. ... .. . . .. .,, . .. . . . .. . .- .- , .. . .. . . .- .. ... ... . .. . ,. : _- :: ..: -



,.-- .,.-.

S7
and

" ' = (29) I l

~' =T(30)

where b is the dimensionless eddy viscosity and is equal to I +Fm/U. The nonslip conditions at the surface

are transformed to "1 = W G 0. The conditions at the edge of the boundary layer require ZT = 1

and = w/uo. Equations (13) and (14) for the pressure gradients at the boundary-layer edge are

embedded in the parameters mro, and m12.

EQUATIONS ALONG THE KEEL LINE

In Figure 1, the keel line is identified as the line of symmetry. For a double model, the water line

also becomes a symmetry line. On this symmetry plane, w and 8 p/Oz are zero, thus causing the

z-momentum equation to be singular. However, differentiation with respect to z yields a nonsingular

equation. After performing the necessary differentiation for the z-momentum equation and applying the

appropriate symmetry conditions, we obtain the following equations:

Continuity Equation

-(uh, sin a) + h sin a w, + v h h, sin a) =0 (311
- y '.-.

x-Momentum Equation

u au au ue aue  --3+ cot + K - K 2e u- cot .'.'.',

hI ax ay hie ax
132l

+ K U v + r
h h ."• ay

II

" ..
•

-. . . • .. • % . -, ,% " . • . . . . ,. . , ,'o - ., . % " . . . . o -. ..



z-Momentum Equation

2 w W awa
- K - (K12 sG

hi axw h2 ay U a- Kz s

C C+ 4-+ K, Ue w, + K, 3, w.,, v. + u2 -a S (33)

h h, a hy h,

This set of equations can be transformed by using a similar set of transformed parameters as

described in Reference 7, with the same modifications as used in the previous section. The final

*transformed first-order partial differential equations can be summarized as follows:

x-Momentum Equation

ia~a,hbv( + Iv + miu -a(, 01l~duamIlU

aii (341
+ ala,) mu= a-) Mio U

i.-Momentum Equation

(aabt'(tm 4 wG aal M4U6W aM 3 Z2 -aja m9 U2

(aaat,+ t+m1 (35)

-) 2 M rl ut + aja 2 , al MIn u

V C'ontinuity Equation

(' a, (mn + mi5  rl (M 140 mn15 + m 181J6-a 1 m

- a 2 ~19 7 =a2 f110 (361

The condition at the edge of the boundary layer is changed to w / ,~U0 All the other

paramecters are the same as the ones for the general 3-D case except:
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NUMERICAL CALCULATION

NUMERICAL METHOD

Since the governing boundary-layer equations derived previously are parabolic, a numerical

marching scheme is adequate for obtaining a solution. The marching process is started at an initial
station in the bow region and is continued downstream. In the crossflow direction, the calculation .,,

proceeds from the ke(A line to the water line. The flow, at the initial station was solved by assuming all

m i = 0 except m, = 0.5, which is a flat-plate solution Equations (34) to (36) along the keel line are
then employed to start the cross-stream sweep. Keller , box method7 is used as the numerical solution

scheme. This method is accomplished by first diffkrencing th, transformed boundary-layer Equations (26)

to (30) with central differences. Newton's method is then applied to linearize the difference equations

and, finally, the linearized system is solved by a block elimination method. Details of this scheme may be

found in Reference 18.

The computations were carried out ,n the DTNSRIX (YBER 176. Typical run times were 80 s

for one boundary-layer sweep on an 87 x 15 surface grid with an average of 60 normal grid points.

PR(EDURE FOR UPDATING OUTERFI)(iE BOUNDARY CONDITIONS
An iterative procedure between the boundary la~er solution and the potential solution is generally

necessary in order to account for the strong interaction between these two iegions of ship stern

flows.- '8 This interaction is usually considered by using the displacenient body concept at - d* or the

equivalent-source concept at y 0 (Reference 191. Thc disadvantage of using the forner approach is

I 3 "
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that a new grid of the displaced body must be generated for each iteration. Although the latter approach

avoids the complexity of regenerating the grid for each iteration, a divergent source distribution is often

encountered at the stern region. Improper treatment of this ill-behaved source distribution causes the

global iteration to be divergent. 20 ' 21 This problem becomes more serious when flow separation exists in

the stern region.

In order to validate the present program for 3-D curvature effects and to avoid the problems

associated with the displacement-body and equivalent-source approaches, a simple procedure was used to

account for the thick boundary-layer effect. In this procedure, firstly (i) the boundary conditions at v = 6

are obtained from the potential-flow solution at the body surface for the first iteration. For the second or

higher iterations, these conditions are recalculated as the off-body points from the singularity distribution

for the original body. The locations for applying the boundary conditions are obtained from the previous

boundary-layer solutions. Secondly, (ii) the normal pressure gradient, as given by Equation (11), is solved

by varying ap/ax and aplaz linearly from y = 0 to y = d for the curvature effect only.

COMPARISON OF EXPERIMENTAL DATA WITH NUMERICAL PREDICTIONS
Wind-tunnel test data13'15 16 have been collected at DTNSRDC for the so-called axisymmetric

Afterbody I and for two three-dimensional bodies of 2:1 and 3:1 elliptic cross-sections. The latter two

three-dimensional bodies are generated from axisymmetric Afterbody I by
p:

-2

Y + a z- ro(w, (37),
a

for an elliptic cross-section on the Y2-plane; ro is the corresponding axisymmetric radius at T, and a is

equal to 2 or 3, respectively, for the 2:1 or 3:1 body. A plot of cross-sections at the same x-location for

these three bodies is shown in Figure 2. All three models have a length L = 3.066 m and were tested in

a wind tunnel at a nominal speed of 30.48 m/s. Figure 3 shows the surface longitudinal and transverse

curvatures of Afterbody I in the stern region. Since the order of magnitude of the longitudinal
curvatures for the two 3-1) bodies is the same as that of Afterbody 1, Figure 3 only shows, at a typical .1

station, the transverse curvatures K230 in the girthwise direction, indicated by 0 as defined in Figure 2,

for both 3-D bodies. The 3:1 body has the least transverse curvature when 0 is between 00 and 800. It

also possesses the largest K230 value when @ exceeds 800. and reaches a maximum at 0 = 900.

Boundary-layer computations were done first for the flow around axisymmetric Afterbody I in

order to validate the ability of the program to include curvature effects across the boundary layer. The -

computations were started with laminar flow and transitioned to turbulent flow at x/L - 0.03. The

14
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. pressure coefficient distribution computed from the potential flow solution for the displaced body 14 is

plotted in Figure 4a as compared to the measured distribution. This calculated pressure distribution was

used as the boundary condition for the following program validation runs. In Figures 4a and 4b, five sets

-2 of velocity predictions are shown along with the measured velocity profiles. These calculations are (i) 3-D

thin boundary-layer calculation, indicated by K13 = K23 = 0 in Figure 4a; (ii) 3-D boundary-layer

calculation with only transverse curvature effect, indicated by K13  0, K2 3 in Figure 4a, (iii)

axisymmetric boundary-layer calculation 22 including only the transverse curvature, indicated by

axisymmetric calculation in Figure 4b; (iv) 3-D boundary-layer calculation with both longitudinal and

transverse curvature effects, indicated by K13. K23 in Figure 4a; all the above four calculations use
Cebeci-Smith turbulence closure, (v) 3-D boundary-layer calculation with both curvature effects and the
modified turbulence model, indicated by K13' K23, and modified turbulence modeling in Figure 4a. The

". axisymmetric boundary-layer calculation (iii) solves the boundary-layer equations and includes the

transverse curvature effect for axisymmetric flow. In terms of numerics, calculation (iii) is an exact

solution of calculation (ii). Comparisons of calculation methods (ii) and (iii) are shown in Figure 4b
Velocity predictions from all calculation methods, except (iii), are shown in Figure 4a. As suggested by its

order of magnitude, the transverse curvature exerts a significant influence on the velocity predictions,

particularly in the outer region of the viscous layer. The effect of the longitudinal curvature on the

velocity prediction shows no influence at x/L = 0.846 and I to ' 2% in the region close to the wall at
x/L = 0.934. More importantly in this "inner region", the velocity prediction in Figure 4a using two

different turbulence models (Cebeci-Smith and modified) are significantly different. The good agreement

of calculations (ii) and (iii) indicates the need to include the curvature effects in 3-D boundary-layer

computations. The good agreement between the predictions of calculation (v) and the measured velocity

profiles suggests that the modified turbulence model gives reasonable predictions for axisymmetric flow.

Based on the findings for axis~mmetric Afterbody I, predictions of the flow about the two 3-D
bodies were made for the following approximations in order to examine the significance of the curvature

c ffccts and the turbulence modeling. Thus. they are

(i) Thin boundary-layer calculation with the Cebeci-Smith model and using the calculated potential .

flow solution at the wall (*p, as the boundary conditions.

ii) Thin houndary laver calculation with the Cebeci-Smith model and using the boundary
Conditions (( )obtaincd from the potential solution at the edge of the boundary layer.

The folloNing three calculations use C> and the calculated values of K and K2 obtained from

[Fquation 17). The houndarv aer calculations were performed by using the procedures described

- previousl) for updating tile edge botjndar\ conditions. The turbulence model for each calculation is:

"iii) Cebeci Smith turbulence model

17
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liv) Modified turbulence model

(v) Huang's turbulence model (v)

The potential flow solution was obtained by using the XYZ potential flow code, 23 which utilizes Hess-

Smith's method24. Calculation methods (i) and (ii) show the effect of the thick boundary layer, and

calculation methods (ii) and (iii) show the effect of the added curvature terms. The results of the last

three calculations illustrate the significance of the turbulence modeling.

Figure 5 shows plots of two different calculated C P distributions used as the boundary conditions

Cpw and Cp. Measured values of Cpw and Cpe are also shown in Figure 5 for comparison. Although the

measured data vary from station to station, this figure indicates that the pressure variation across the

boundary layer becomes large when 0 increases. The calculated C values agree reasonably well with the

measured CPe values. The calculated Cow values, however, have too strong a girth-wise adverse pressure L•.
gradient for 0 between 800 and 900. This behavior is responsible for the earlier predicted separation.

which will be discussed later. The predicted drop-off of Cpe values near 0 = 901 and x/L > 0.89 is also

associated with this earlier predicted separation. With the Cpwand CP values shown in Figure 5. the

actual magnitudes of the crossflow velocities used in the computations introduced in Equations (131 and

14) are plotted in Figure 6. Although the experimental data are quite scattered, the predicted We values

are somewhat larger than the measured values, except at x/L = 0.719 for the 3:1 body.

The predicted axial velocity profiles are shown in Figures 7a and 7b for the 2:1 body and Figures

8a and 8b for the 3:1 body. Results of calculation (ii) are shown in all figures as baselines for comparing

the relative magnitudes of the predictions. Separation is predicted when flow reversal occurs in the axial

.- direction and the calculation stops at the predicted separation point. Therefore, at each 6-value, no profile

is plotted downstream of the separation point. Table I shows the predicted separation locations xsep and
6sep for each case as compared to the experimentally observed locations of separation for the 2:1 body

and Table 2 for the 3:1 body. Calculation set (i) predicts early separation. The other four calculation sets

predict the locations of separation inception within 3% of the observed values. Figure 3 indicates that at

x/L 0.894 the transverse curvature for axisymmetric Afterbody I equals those of the two 3-D bodies

near 0 = 800. As 0 increases further, the curvature becomes larger for the two 3-D bodies. But the L
predicted velocity profiles in Figure 4 for axisymmetric Afterbody I respond more strongly to the

curvature effect than those in Figures 7 and 8 for the two 3-D bodies. This is due to the three.

dimensionality of the latter predictions.

200

..



.L cp. C. (MEASURED) L c C, (ME ASUREDI

0767 C] 0 719 0 U
0858 0 9 2:1 O84 a * 3.1
089 0 ODY 0894 C0 BODY
0934 A &0934 &

*0.08 - CALCULAT(J C, 0.08 CALCUILATED ,
-- CALCULATE D C A

CACLTE .

0 ,6 0.06

p L.

0 0 0 0 2

0 _ _ _ _ _ _ _ _
0 20 40 60 80 1~00 0 4 0 80

o00eg24t(eg
F i g u r 5 -00r2n i r c . u c C o f i i n

-004
-00

* oo

......... -.................- - -...

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .



2:1 I POTENTIAL SOLUTION BASED ON Cpw
* iooBODY --- POTENTIAL SOLUTION BASED ON C~

Q EXPER IMENT _,

80 0 

60 -/

(d eg)

40 /

x/L 0 077 0.858 0.894 /0.934

20/

00 0.1 0 0.1 0 0j'I 0.2

10[3:1 
POTENTIAL SOLUTION BASED ONC

BODY H -POTENTIAL SOLUTION BASED ON Cp

0 0

/

1 0 11 0 0 (18n1 24

Itl 6 xpw nN C o,,l w 1J-jc(Ijtl~ r ie



Figure 7 - Axial Velocity Predictions for the 2:1 Body
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Figure 7 (Continued)
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Figure 8 - Axial Velocity Predictions for the 3:1 Body
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TABLE I -PREDICTED LOCATIONS OF SEPARATION INCEPTION COINPAREf1) 10
THE EXPERIMENTAL OBSERVATION FOR THE 2:1 BODY

Boundary Curvature Turbulence x.o
Condition f Effects Modeling

Experiment 0.90 800 900

I Predictions

11) Wall No C S* 0.775 900
Iii Edge No CS 0.894 80.70
iiii Edge Yes C-S 0.934 83.20
liv) Edge Yes Modified 0.914 85.60
(v) Edge Yes Huang 0.914 8)g

'TABLE 2 - PREDICTED LOCATIONS OF SEPARATION INCEPTION (COMPARED TO TI-L

EXPERIMENTAL OBSERVATION FOR THE 3:1 BODY

Boundary C urvature I TurbulenceI
Condition j Effects j Modeling el l

Experiment 0.92 J 80' 900

Predictions

ii) Wall No C S* 0.83490
mii Edge No C s 0.934 750

(ill) FEdge Yes (' S0(956 750

mi'~ Edge Yes \lodified 0.934 85.60
tFt dge Yes Ilag0.907 900,

*('ebeci Smlith

Hi-h last three calculation sets, for hoth 3 1) bodieS so the effect of tUrbulence modeling. H-uang%,

*turbulence model (calculation method 1vo undere,,timates the diner region \'elocitN as compar-Cd to the

*('eheci-Smith model (calculation method (16H. BcauIse of the overprediction of Q in Equation 1211 for the

modified turhulence model, calculation method fiv gives the vkorse predictions. This overprediction of'k

is related to the use of local curvature and houndar\ la\er parameters. Although the (ebcI)C ilmith

*turbulence model does not inlclude curvature effect,,. it s"orks better inl terils of' velocit\ prediction than

the other two turbulence models for the two tested 3 1) bodies. li-gure 9 shlo\ss the edd\ viscosit\

comparisons fetween the measured data and the calculated %alues b\ the (ebeci-Smith miodel and
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Huang's turbulence model (indicated by dashed line). Huang's turbulence model closely predicts the levels

of the eddy viscosity in thick boundary layer, as compared to the measured data. but it underpredicts the

" velocity profile in the inner region unlike the Cebeci-Smith model.

Generally, the predictions of calculation method (iiii. including the ones at x/L = 0.719 and 0.810.

and 0 = 900 for the 3:1 body, are in good agreement with the measurements. The deviation of the -.

predicted velocity from the measured velocity at 0 - 900 and x/l = 0.854: 0.894 for the 3:1 body in"

Figure 8 may be related to the proximity of the measurements to the separation point.

(ON('LUSION

Three-dimensional thick boundary-laver equations. including variations of the metric coefficients.

surface curvatures and static pressure coefficients with the normal distance from the wall, are solved by

using the marching technique of Keller's box method. A nonorthogonal surface-fitted coordinate system is

used. Formulas for calculating second-order geometric parameters are derived. Three turbulence models.

two of which include the curvature effects. using the eddy -viscosity concept are compared. Three sets of

measured data. for one axisymmetric and two 3D flows are compared with calculated results. The

conclusions drawn from the present study can be summarited as follows:

(i) The 3-D boundary-layer computations with varying geometric curvatures in the normal

direction have been validated by comparing the axisymmetric boundary layer calculations to

experimental data.

lii The predictions show a significant improvement in the present solution procedures by including

the variation of transverse and longitudinal curvatures across the thick turbulent stern flows.

iii) The calculation procedure that uses the edge boundary conditions (CI for a thick boundary

layer predicts a more accurate flow separation location for a separated flow than that using the

surface boundary condition (C

(iv) The modified turbulence modeling. which uses the local curvature and local boundarN la.er

parameters, works reasonably well for axis.minetric 1loxs hut not as well for 3-I) flow.

(v) Although Huang's turbulence model correlates edds viscosit\ distributions in thick boundar,

laers better than the (ebeci-Sniith model, the \clocit\ predictions using Huang's model

underestimate the inner-region velocit. "

A(K N(WI- I; F)(i NII:N
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APPENDIX
DERIVATION OF INNER-LAYER EDDY-VISCOSITY EQ. (191

For a small pressure gradient flow. the x- and z-momentum Equations 19) and 10) in the inner
region of the viscous layer can be approximated by

a a-y (h1 Ii- ht\)  - . .h h-,rT) = 0 (A.I)

Integrating Equation iA. I) leads to

a aT Q u; IA.21

[he subscripts s and w stand for the streamline direction and the wall. By introducing the following
t ondiniensional quantities.

U = - -- llI

K ) Kqo v (A"5130 -2) 10
130 = - -- 1 o = - A .31

u UTI T

a 1 a a a-.

and by means of' the eddy viscosity concept. the Equation (A.21, in the fully turbulent flow. can be
\\ rittn in the nondimensional form as

dii diik~
+_ - I .1 _

dY* tl dYX 2

\k here

In (a. a I
K 3h 1 -r1K• -1

K K

y , _--...-.3 130-"Y.
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By comparing Equation (A.4) to the formulation of the eddy viscosity as shown in Reference 12 for 2-D

flows, Equation (19) can be obtained.
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